On the strong law of large numbers and the central limit theorem for martingales
نویسندگان
چکیده
منابع مشابه
Strong Law of Large Numbers and Functional Central Limit Theorem
20.1. Additional technical results on weak convergence Given two metric spaces S1, S2 and a measurable function f : S1 → S2, suppose S1 is equipped with some probability measure P. This induces a probability measure on S2 which is denoted by Pf−1 and is defined by Pf−1(A) = P(f−1(A) for every measurable set A ⊂ S2. Then for any random variable X : S2 → R, its expectation EPf −1 [X] is equal to ...
متن کاملA Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملOn the Strong Law of Large Numbers
N lim 1( 1: f(nkx)) = 0, N-N k_l or roughly speaking the strong law of large numbers holds for f(nkx) (in fact the authors prove that Ef(nkx)/k converges almost everywhere) . The question was raised whether (2) holds for any f(x) . This was known for the case nk=2k( 2) . In the present paper it is shown that this is not the case . In fact we prove the following theorem . THEOREM 1 . There exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1968
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1968-0221562-x